2020 Tailings and Mine Waste Conference
Technical Paper Presentation Schedule

Day 1: Monday, November 16

<table>
<thead>
<tr>
<th>Session / Track</th>
<th>Moderator</th>
<th>Presentation Title</th>
<th>Presenter - Last Name</th>
<th>Presenter - First Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A Geotechnical Considerations 1</td>
<td>Ryan Sheedy</td>
<td>Variability in sand characteristics – a case study at LKAB mine tailings facility in Sweden</td>
<td>Engström</td>
<td>Karin</td>
<td>LKAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAILMIN Mine Tailings Database</td>
<td>Macedo</td>
<td>Jorge</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk of high performance Note to enhance tailing</td>
<td>Quinter</td>
<td>Okayo</td>
<td>University of Queensland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specimens size effect on the compressive strength of geopolymerized mine tailing</td>
<td>Zhang</td>
<td>Nan</td>
<td>Colorado School of Mines</td>
</tr>
<tr>
<td>1B Reclamation & Remediation</td>
<td>Andy Jung</td>
<td>Influences of residual sulfide content and mineralogical composition of desulfurized tailings on performance</td>
<td>Williams</td>
<td>David</td>
<td>The University of Queensland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of a reclaimed cover</td>
<td>Demers</td>
<td>Isabelle</td>
<td>Université du Québec en Abitibi-Témiscamingue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydroscopic predictions of water content and oxygen concentration in a geowaste test pit</td>
<td>Reza Goronjin</td>
<td>Mohammad</td>
<td>Barr Engineering</td>
</tr>
<tr>
<td>1C Risk Informed Design 1</td>
<td>Mike Henderson</td>
<td>Risks of damancy: Reducing tailings risk after operations, before closure</td>
<td>Boswell</td>
<td>Jeremy</td>
<td>Thruher Engineering Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reducing long term risk at the Candidasata Tailings Storage Facility</td>
<td>Soti</td>
<td>Antonio</td>
<td>Knight Piésold Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk-based prioritization of improvement plans for critical infrastructure</td>
<td>Chavan</td>
<td>Karen</td>
<td>Envirot Integration Strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improved tailings dam design and management through smarter model</td>
<td>Moncicoff</td>
<td>Josh</td>
<td>Capitalise Mining Corp</td>
</tr>
<tr>
<td>2A Geotechnical Considerations 2</td>
<td>Zach Fox</td>
<td>A rapid measurement method to determine hydraulic conductivity of tailings under self-weight consolidation</td>
<td>Paul</td>
<td>Simms</td>
<td>Carleton University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exploring the effects of side wall friction in a slurry consolidometer test</td>
<td>Barnard</td>
<td>Hennie</td>
<td>Golder Associates Africa (Pty) Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluation of shear strength and consolidation behavior of mine tailings from a slurry to a soft soil</td>
<td>Tehani</td>
<td>Kathy</td>
<td>The University of Queensland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On the performance of two advanced constitutive models in capturing the element response of tailings</td>
<td>Pretil</td>
<td>Remi</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>2B Site Characterization & Monitoring 2</td>
<td>Matt Fuller</td>
<td>Tailings dam monitoring: Time for an integrated system approach</td>
<td>Olivera</td>
<td>Luciano</td>
<td>Stabitas Consulting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permanent geotechnical monitoring of tailings dams using the autonomous U.H.K. T.A. syste</td>
<td>Tresodi</td>
<td>Greta</td>
<td>LTL-LASTEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mine tailings surveying after the Timiauinhona dam failure</td>
<td>Tyner</td>
<td>Jim</td>
<td>Phototal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recent geotechnical monitoring results reflect operational improvements at the Montaje Minas</td>
<td>Garcia</td>
<td>Eduardo</td>
<td>Newmont - Mexico</td>
</tr>
<tr>
<td>2C Design & Operation 4</td>
<td>Nick Rocca</td>
<td>A rapid measurement method to determine hydraulic conductivity of tailings under self-weight consolidation</td>
<td>Paul</td>
<td>Simms</td>
<td>Carleton University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exploring the effects of side wall friction in a slurry consolidometer test</td>
<td>Barnard</td>
<td>Hennie</td>
<td>Golder Associates Africa (Pty) Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaluation of shear strength and consolidation behavior of mine tailings from a slurry to a soft soil</td>
<td>Tehani</td>
<td>Kathy</td>
<td>The University of Queensland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On the performance of two advanced constitutive models in capturing the element response of tailings</td>
<td>Pretil</td>
<td>Remi</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>3A Design & Operation 1</td>
<td>Kurt Schimpke</td>
<td>Monitoring slope instability due to undrained creep</td>
<td>Boulanger</td>
<td>Ross W</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic effective stress analysis of a centerline tailings dam – Case Study</td>
<td>Macedo</td>
<td>Jorge</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geotechnical stability assessment of upstream raised 1SF on the African Rift</td>
<td>Yethol</td>
<td>Michelle</td>
<td>Geotechnical Analysis Group</td>
</tr>
<tr>
<td>3B Site Characterization & Monitoring 1</td>
<td>Shawn Steiner</td>
<td>Effective use of point load testing and geophysical methods for mine plan design and monitoring</td>
<td>Steiner</td>
<td>Nancy</td>
<td>Jones & Walker Engineering & Env. Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tailings characterization using cone penetration testing and machine learning</td>
<td>Doumoung</td>
<td>Jason</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil investigation for a tailings facility in the geotechnical performance of the tailings</td>
<td>Zagh</td>
<td>Ying</td>
<td>Wood Environment & Infrastructure Solutions</td>
</tr>
<tr>
<td>3C Geosynthetics</td>
<td>Matt Bachmar</td>
<td>Evaluation of shear wave velocity and void ratio in mine tailings using the field velocity resistivity probe</td>
<td>Harvey</td>
<td>Jason</td>
<td>Barr Engineering Cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effect of thickening on tail filtration of tailings</td>
<td>Rahal</td>
<td>Kenneth</td>
<td>Thiel & Thiel Tailings Solutions</td>
</tr>
<tr>
<td>4A Filtered Tailings</td>
<td>Daryl Longwe</td>
<td>Geotechnical characterization of geosynthetic clay liners to synthetic mine waste leachate</td>
<td>Norris</td>
<td>Anna</td>
<td>Colorado State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successful tailings dewatering design using multi-linear drainage geocomposites</td>
<td>Saunier</td>
<td>Pascal</td>
<td>APTEX- Texel Geosynthetics Inc</td>
</tr>
<tr>
<td>4B Design & Operation 2</td>
<td>Nick Rocca</td>
<td>Anaerobic digestion of tailings: A case study from a gold mine in South Africa</td>
<td>Donavan</td>
<td>Michael</td>
<td>CETCO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtration of tailings with low water content</td>
<td>Guarni</td>
<td>Raymond</td>
<td>Golder Associates</td>
</tr>
</tbody>
</table>

Day 2: Tuesday, November 17

<table>
<thead>
<tr>
<th>Session / Track</th>
<th>Moderator</th>
<th>Presentation Title</th>
<th>Presenter - Last Name</th>
<th>Presenter - First Name</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A Geotechnical Considerations 3</td>
<td>Daniel Serrig</td>
<td>Managing the liquefaction potential of compacted tailings sand at Sino</td>
<td>Zhang</td>
<td>Ying</td>
<td>Wood Environment & Infrastructure Solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Effect of shear strain rate on undrained shearing resistance of a clean silica sand measured in direct simple shear tests</td>
<td>Chen</td>
<td>Janul</td>
<td>University of Illinois - Urbana-Champaign</td>
</tr>
<tr>
<td>3B Site Characterization & Monitoring 1</td>
<td>Kurt Schimpke</td>
<td>Assessment of Liquefaction Triggering for Upstream Tailings Dams Using Limiting Equilibrium Methods</td>
<td>Gjerapic</td>
<td>Gorjan</td>
<td>University of Colorado at Boulder</td>
</tr>
<tr>
<td>3C Design & Operation 4</td>
<td>Shawn Steiner</td>
<td>Variable drainage rate and permeability of mine tailings characterized</td>
<td>Doumoung</td>
<td>Jason</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The impact of thickening on tail filtration of tailings</td>
<td>Rahal</td>
<td>Kenneth</td>
<td>Thiel & Thiel Tailings Solutions</td>
</tr>
<tr>
<td>4A Filtered Tailings</td>
<td>Matt Bachmar</td>
<td>Filtration processes and upset conditions in tailings</td>
<td>Ken</td>
<td>Nicholas</td>
<td>Klohn Crippen Berger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhancing vacuum belt filter dewatering to adapt to finer tailings grades – a Case Study</td>
<td>Whanail</td>
<td>Oliver</td>
<td>Nord International</td>
</tr>
<tr>
<td>4B Design & Operation 2</td>
<td>Daryl Longwe</td>
<td>A comparative study of methods used to determine the factor of safety</td>
<td>Brandao</td>
<td>Hugo A</td>
<td>UFMG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerical modeling of a mine waste dump-thump test with different constitutive models</td>
<td>Vatidvia</td>
<td>Myzael</td>
<td>Andrettis</td>
</tr>
<tr>
<td>4C Geosynthetics</td>
<td>Kate Patterson</td>
<td>Hydraulic conductivity of geosynthetic clay liners to synthetic mine waste leachate</td>
<td>Norris</td>
<td>Anna</td>
<td>Colorado State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Successful tailings dewatering design using multi-linear drainage geocomposites</td>
<td>Saunier</td>
<td>Pascal</td>
<td>APTEX- Texel Geosynthetics Inc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New filter, longer GCIs for mining application</td>
<td>Donovan</td>
<td>Michael</td>
<td>CETCO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consideration of polymers to create a more cost-effective and sustainable approach to contaminated fine sediment remediation</td>
<td>Guarni</td>
<td>Raymond</td>
<td>Golder Associates</td>
</tr>
<tr>
<td>Session / Track</td>
<td>Moderator</td>
<td>Presentation Title</td>
<td>Presenter - Last Name</td>
<td>Presenter - First Name</td>
<td>Company</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5A Geochemistry</td>
<td>Larry Cope</td>
<td>Geochemical characterization of sulfurized tailings and waste rock of a graphite mine</td>
<td>Lord</td>
<td>Veronik</td>
<td>Research Institute on Mines and Environment (RIME)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Innovative leachate treatment using passive biochemical reactor</td>
<td>Robinson</td>
<td>Janise</td>
<td>SLR Consulting Limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Innovative field characterization method for self-heating potential of sulfidic paste back fill</td>
<td>Timmis</td>
<td>Brett</td>
<td>Holder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large-scale instrumented column test to assess oxidation and leachate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5B Governance</td>
<td>Jason Hilgers</td>
<td>Developing trigger action response plans (TARPS) in a changing regulatory environment</td>
<td>Davis</td>
<td>Michael</td>
<td>Stantec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preparation of an ISO standard for mine closure and reclamation planning</td>
<td>Rahn</td>
<td>Michael</td>
<td>Parsons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral industry in Armenia: management issues and perspectives for tailings retreatment</td>
<td>Arakelyan</td>
<td>Alexander</td>
<td>AUA Acopian Center for the Environment + AUA Center for Responsible Mining</td>
</tr>
<tr>
<td>5C New Technologies</td>
<td>Melanie Davis</td>
<td>Improving behavior of gold mine tailings using microbes compared with adding cement, for closure of pH 1 tailings</td>
<td>Cifuentes</td>
<td>Hernan</td>
<td>The University of Queensland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass from tailings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nano Maci (Inorganic technology:Bind & contain RCRA II metals & stabilize mine tailings)</td>
<td>Brammer</td>
<td>T.J.</td>
<td>Pro-Seal Products Corporation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorporating time treatment as part of innovative mine water treatment strategy</td>
<td>Minchow</td>
<td>Kristina</td>
<td>Holder</td>
</tr>
<tr>
<td>6A Design & Operation 3</td>
<td>Dan Overton</td>
<td>Field water release and consolidation performance of XUR treated fluid fine tailings</td>
<td>Jeetly</td>
<td>Poonam</td>
<td>Thurber Engineering Ltd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorporating lime treatment as part of innovative mine water treatment strategy</td>
<td>Tripathi</td>
<td>Sudhir</td>
<td>Knight Piesold & Co</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incorporating time treatment as part of innovative mine water treatment strategy</td>
<td>Brink</td>
<td>Nicholas</td>
<td>Stantec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field capping trial on frozen centrifuged tailings deposits</td>
<td>Wu</td>
<td>Evan</td>
<td>Thurber Engineering Ltd</td>
</tr>
<tr>
<td>6B Mine Tailings Topics</td>
<td>Carlo Cooper</td>
<td>Tailings dewatering – Analysis of cases to understand trends in capex and opex</td>
<td>Wallgren</td>
<td>Mark</td>
<td>Outotec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated Storage Facility – A new concept for mine waste storage</td>
<td>Siaiang</td>
<td>David</td>
<td>New Mexico Institute of Mining & Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrating TSF histories using modern commercial and declassified Cold War satellite photos</td>
<td>Timmer</td>
<td>Jim</td>
<td>Photosat</td>
</tr>
<tr>
<td>6C Risk Informed Design 2</td>
<td>Dean Durkee</td>
<td>The factor of safety and probability of failure relationship</td>
<td>Oboni</td>
<td>Franco</td>
<td>Oboni Riskope Associates, Inc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boosting a more efficient Tailings Dam risk management service through an innovative IoT ecosystem</td>
<td>Bartoli</td>
<td>Andrea</td>
<td>World Sensing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessing automated hazard mapping of tailings storage facility failure</td>
<td>Enis</td>
<td>Sally</td>
<td>The University of British Columbia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The effect of assumed residual strength on remediation cost of a typical tailings dam</td>
<td>Sarantonis</td>
<td>Emmanuel</td>
<td>BGC Engineering Inc</td>
</tr>
</tbody>
</table>

Note: Schedule is subject to change.